

Cardno

.

Floodplain Management • Flood study - commissioned in 2000 Floodplain management study and plan - 2005 2100 planning level included 0.7m freeboard which included increased MSL and run-off due to climate change · Stage 1 Climate Change Impact Study - Using established flood model system Identified a 0.27m increase in 100-year ARI flood level due to climate change Stage 2 Climate Change Impact Study (2008) Utilised a full-process model system to investigate climate change impacts on flood levels

People | Clients | Growth | Quality | Performance

C	Cardino People Clients Growth Quality Performance
	Stage 2 Climate Change Investigations
.	Scenarios based on DECC guidelines – "Floodplain Risk Management Guideline – Practical Consideration of Climate Change" (2007)
	 Scenario 1: Current 100-years ARI catchment flow + 20-years ARI ocean storm with Low-Level climate change scenario (SLR=+0.18m)
	- Scenario 2: Current 100-years ARI catchment flow + 20-years ARI ocean storm with Mid-Level climate change scenario (SLR=+0.55m)
	 Scenario 3: Current 100-years ARI catchment flow + 20-years ARI ocean storm with High-Level climate change scenario (SLR=+0.91m)
	 Scenario 4: Current 100-years ARI catchment flow + 20% increase in rainfall + 20-years ARI ocean storm with Mid-Level climate change scenario (SLR=+0.55m)

- Wave-induced transport
- Reference concentration

D	Cardno LawsonTreloar	Pe	ople Clients	Growth Qua	lity Performan				
Climate Change Scenarios – SLR Result									
		100-years ARI Flood Levels (m AHD)							
		Existing Case Delft3D Model	Scenario 1	Scenario 2	Scenario 3				
[Hydrology	36-hour, 100- year ARI	36-hour, 100-year ARI	36-hour, 100-year ARI	36-hour, 100- year ARI				
	Climate Change	Existing	Low-level - SLR +0.18m	Mid-level - SLR +0.55m	High-level - SLR +0.91m				
Ē	Griffins Bay	2.24	2.41	2.63	3.04				
	Tallawarra Power Station	2.24	2.41	2.63	3.04				
	Horsley Inlet	2.24	2.41	2.63	3.04				
	Cudgeree	2.24	2.41	2.64	3.04				
	Windang Bridge	2.15	2.35	2.55	3.01				
	Entrance Channel	1.71	1.89	2.25	2.32				

Cardre Lawson	People Clients Growth Quality Performance										
Climate Change Scenarios – SLR + Runoff Increase											
		100-years A	100-years ARI Flood Levels (m AHD)								
		Existing Case Delft3D Model	Scenario 2	Scenario 4							
	Hydrology	36-hour, 100- year ARI	36-hour, 100- year ARI	36-hour, 100- year ARI +20%							
	Climate Change	Existing	Mid-level - SLR +0.55m	Mid-level - SLR +0.55m							
	Griffins Bay	2.24	2.63	2.88							
	Tallawarra Power Station	2.24	2.63	2.88							
	Horsley Inlet	2.24	2.63	2.88							
	Cudgeree	2.24	2.64	2.88							
	Windang Bridge	2.15	2.55	2.77							
	Entrance Channel	1.71	2.25	-							

People | Clients | Growth | Quality | Performance Climate Change Scenarios – Outcomes Latest models can realistically simulate entrance opening Entrance opening rate is likely to be much more rapid than previously adopted - Modelled dynamic entrance opening rate 70m²/hr SLR impacts on flood levels are somewhat less than SLR - Low lying floodplain - Additional floodplain area as the Lake level increases Potential increases in flood levels are consistent with early preliminary estimates . 0.7m freeboard has been a wise inclusion in the floodplain policy

People | Clients | Growth | Quality | Performance

Conclusions

- Entrance characteristics influence flooding upstream
- Latest model systems can reliably simulation flood flows and entrance changes simultaneously
- Modelling indicates that the initial opening of the entrance can be more rapid than previously thought
- · Model systems cannot be just used 'off the shelf'
- Lake Illawarra studies provide a reference for the dynamic investigation of flooding and entrance behaviour at other NSW coastal lakes and lagoons

C Cardno

People | Clients | Growth | Quality | Performance

Climate Change Scenarios – Outcomes

- Latest models can realistically simulate entrance opening
 Entrance opening rate is likely to be much more rapid than previously adopted
 - Dynamic entrance opening rate 70m²/hr
- SLR impacts on flood levels are somewhat less than SLR
 Low lying floodplain
 Additional floodplain
 - Additional floodplain area as the Lake level increases
- Potential increases in flood levels are consistent with early preliminary estimates